Thermally Conductive Ceramics

May 19, 2021

Thermally Conductive Ceramics

The use of ceramics in high thermal conductivity applications is a growing specialized market. Oxide ceramics are the most common base materials.  But the majority of them are limited to 26-30 W/mK which, when compared to the two most common high thermal conductivity metals, copper around 385 W/mK and aluminum around 150-185 W/mK, leaves a large gap.

The goal is to increase the thermal conductance while retaining the other key feature of ceramics, electrical insulation.

Recent developments in alumina have increased the thermal conductivity in some grades up to 39 W/mK, still far short of commonly used metals, but a significant increase from its base level.

Ceramic materials that are selected to reach toward this higher thermal conductance are a specialized group. All have their own strengths and weaknesses and not all offer the key property of electrical insulation.

Let’s look at four contenders, including Boron Nitride, Aluminum Nitride (AlN) composites, Beryllium oxide, and Aluminum Nitride. The first contender is Shapal Hi-M Soft, a composite of Aluminum Nitride and Boron Nitride, which gives a significant increase in thermal conductivity, over 92 W/mK, and improves the electrical insulation. The combination of these two materials also brings a second benefit to the material, its machinability. It does not require diamond tooling to machine. But achieving this machinable Aluminum Nitride / Boron Nitride composite requires hot pressing, which limits the available size of the material.

Boron Nitride, another hot-pressed material, is also machinable, and is available in larger pieces. Plus there are many grades available.  But only the highest purity can match the machinable AlN / Boron Nitride composite for thermal conductance and, in some cases, can outperform it. The high Purity grades are mechanically weaker and softer than the machinable Aluminum Nitride / Boron Nitride composite.

Beryllium Oxide has been the material of choice for some high-end projects for many years.  This material has a thermal conductivity of 285 W/mK, good electrical insulation, and as an oxide ceramic has none of the specialized nitrogen furnacing requirements of Aluminum Nitride. The main drawback is the health and safety requirements associated with this material, resulting in only specialized applications tending to use it, such as in military-type requirements.

Aluminum Nitride (AlN) tends to be used mainly in substrate form, as the next step up from Alumina substrates.  Most of the world’s production of AlN is in this form. The thermal conductivity of AlN depends on grade and quality.  The industry standard tends to be 170-180 W/mK, with lesser grades down to 150 W/mK, and ultra-high purity up to around 220 W/mK. AlN components in a 3D geometry are far less common. Many engineers prefer to use a machinable Aluminum Nitride composite, especially in initial design phases, but often also in production volumes as well, even though it has lower thermal conductance.

If you want the highest thermal conductance and have really deep pockets, then at over 2000 W/mK, synthetic Diamond is for you. But your thermal conductance requirement would have to be of an extreme nature.

The below table compares the thermal conductivity of 3 electrical insulators (Aluminum Nitride, Shapal, and Alumina) and 2 electrical conductors (Aluminum and Copper):

Compound
Aluminum
ID
Al
Thermal Conductance
225 W/mK
Compound
Copper
ID
Cu
Thermal Conductance
380 W/mK
Compound
Aluminum Nitride
ID
AlN
Thermal Conductance
170 W/mK
Compound
Shapal (Machinable AlN)
ID
Al/BN Composite
Thermal Conductance
92 W/mK
Compound
Alumina
ID
Al2O3
Thermal Conductance
26 W/mK

Find more information about Shapal Hi-M Soft, Aluminum Nitride, Boron Nitride, and Alumina.

Related Materials

Shapal Brand Image

Shapal Hi M Soft™

Machinable AlN

Shapal Hi M Soft is a hybrid type of machinable Aluminum Nitride (AlN) ceramic that offers high mechanical strength and thermal conductivity.

Aluminum Nitride PCAN1000 Brand Image

Aluminum Nitride

CeramAlum™

Aluminum Nitride (AlN) is an excellent material to use if high thermal conductivity and electrical insulation properties are required -- an ideal material for use in thermal management and electrical applications.

Boron Nitride Grade PCBN1000 Brand Image

Boron Nitride

Boron Nitride Grades

Boron Nitride (BN) is an advanced synthetic ceramic material available in solid and powder form. It has outstanding thermal conductivity and is easy to machine.

Alumina CeramAlox Brand Image

Alumina (Aluminum Oxide)

CeramAlox™

Alumina, also known as Aluminum Oxide, is a hard wearing advanced technical ceramic material frequently used in a wide variety of industrial applications.

Most Recent Posts

Super Hard Ceramics – They Don’t Get Much Tougher

Super Hard Ceramics – They Don’t Get Much Tougher

In the world of technical ceramics, there are two materials that are surpassed only by diamond and cubic boron nitride in terms of hardness – and both are used by China Ceramic Parts, Inc. as a base material for a wide range of technical components in an equally wide...

Aluminum Nitride (AlN) vs Shapal

Aluminum Nitride (AlN) vs Shapal

The increasing use of Aluminum Nitride (AlN) in power electronics, dissipating heat and providing electrical insulation has been an ongoing trend. The performance of Aluminum Nitride far outstrips Alumina in some critical areas. But the added cost of manufacturing AlN...

Cutting Ceramics with Fire & Water

Cutting Ceramics with Fire & Water

Over the years there have been many great movies involving fire and water and the fantasy drama television series ‘Game of Thrones’ has done much to take two of the earth’s most natural elements to a whole new level.

Behind the scenes, fire and water provide a slightly less glamorous […]